siegling proposition

timing belts

Calculation methods

You can find detailed information on Siegling Proposition high quality timing belts in the overview of the range (ref. no. 245).

Contents		
Formulae	2	
Calculation	5	
Calculation examples	7	
Calculation sheets	15	

Tables

26

Rod	<u>bo</u>
MO\	EMENT SYSTEMS

Formulae

1. Forces

Symbol	Designation	Unit	Calculation/Remarks
Effective pull to be transmitted	Fυ	Ν	$F_{U} = \frac{2 \cdot 10^{3} \cdot T}{d_{0}} = \frac{19.1 \cdot 10^{6} \cdot P}{n \cdot d_{0}}$ $= \frac{10^{3} \cdot P}{v} [N]$ $F_{U} = F_{A} + F_{H} + F_{R} \dots [N]$
Accelerating force	F _A	Ν	$F_A = m \cdot a [N]$
Lifting power	F _H	Ν	$F_H = m \cdot g \cdot sin \alpha$ [N] (sin α for inclined conveying)
Frictional force (μ values table 4)	F _R	Ν	$F_R = m \cdot \mu \cdot g [N] (g = 9.81 m/s^2)$
Maximum effective pull	F _{U max}	Ν	$F_{U \max} = F_U \cdot (c_2 + c_3) [N]$
Specific effective pull required	F' _{U req}	Ν	$F'_{U req} = F_{U max}/c_1 [N]$
Specific effective pull	F'u	Ν	from calculation sheet
Pretensioning force	Fv	Ν	$F_V \ge 0.5 \cdot F_{U max}$ [N] (2-pulley drives)
			$F_V \ge F_{U \max}[N]$ (linear drives)
Force determining belt selection	F _B	Ν	$F_B = F_U max + F_V [N]$
Permissible tension member load	Fper	Ν	Table value from calculation sheet
External force	F	Ν	
Static shaft load	F _{WS}	Ν	$F_{WS} = 2 \cdot F_V [N]$ (2-pulley drives)

2. Masses

Symbol	Designation	Unit	Calculation/Remarks	
Mana ta ka waxa d		l en	na na ina ina ina firal	
Mass to be moved	m	ку	$m = m_R + m_L + m_Z_{red} + m_S_{red} [Kg]$	
Mass of belt	m _R	kg	$m_R = m'_R \cdot l/1000 [kg];$	
Belt weight per metre	m' _R	kg/m	Table value from calculation sheet	
Mass of linear slide	mL	kg		
Mass of timing belt pulley	mz	kg	$m_Z = \frac{(d_k^2 - d^2) \cdot \pi \cdot b \cdot \rho}{4 \cdot 10^6} [kg]$	
Reduced mass of timing belt pulley	m _{Z red}	kg	$m_{Zred} = \frac{m_Z}{2} \cdot \left[1 + \frac{d^2}{d_k^2}\right] [kg]$	
Mass of take-up pulley	ms	kg	$m_{\rm S} = \frac{(d_{\rm S}^2 - d^2) \cdot \pi \cdot b \cdot \rho}{4 \cdot 10^6} \ [kg]$	
Reduced mass of take-up pulley	m _{S red}	kg	$m_{Sred} = \frac{m_S}{2} \cdot \left[1 + \frac{d^2}{d_S^2}\right] [kg]$	

3. Measurements

Symbol De	signation	Unit	Calculation/Remarks
Bore diameter	d	22.22	
Pitch diameter	do	mm	$d_0 = z \cdot t/\pi$ [mm], catalogue value
Outside diameter	dk	mm	Catalogue value of timing belt pulley supplier
Take-up pulley diameter	ds	mm	5 5 1 7 11
Width of timing belt pulley, take-up pulley	b	mm	
Belt width	b _o	mm	
Belt length untensioned	I	mm	for i = 1:
for 2-shaft drives			$I = 2 \cdot e + \pi \cdot d_0 = 2 \cdot e + z \cdot t \ [mm]$
			for $i \neq 1$:
			$I = \frac{t \cdot (z_2 + z_1)}{2} + 2e + \frac{1}{4e} \left[\frac{t \cdot (z_2 - z_1)}{\pi} \right]^2$
Belt length general		mm	$I = z \cdot t \text{ [mm]}$
Clamping length per belt end	l _k	mm	for AdV 07
Centre distance (exact)	е	mm	is calculated from I
Centre distance (exact)	Δe	mm	Rotating 2-pulley drives and
			2-pulley linear drives
			(AdV 07clamped):
			$\Delta e = \frac{F_V \cdot I}{2 \cdot c_{spec}} [mm]$
			Clamped belt (AdV 07)
			$\Delta e = \frac{F_V \cdot I}{c_{\text{spec}}} \text{ [mm]}$
Positioning deviation under			$\Delta s = \frac{F}{F}$ [mm]: $\Delta s_{min} = \frac{F}{F}$ [mm]
influence of external forces	Δs	mm	C C C C C C C C C C C C C C C C C C C
Belt pitch	t	mm	Centre distance of adjacent teeth

4. Constants and Coefficients

Symbol	Designation	Unit	Calculation/Remarks
Density	ρ	kg/dm ³	e.g. pulley material
Friction coefficient	μ		Depends on friction pairing; see table 4
Teeth in mesh factor; number of teeth involved in power flux	c ₁		$i = 1; c_1 = z/2$ $i \neq 1; \qquad c_1 = \frac{z_1}{180} \cdot \arccos \frac{(z_2 - z_1) \cdot t}{2 \cdot \pi \cdot e}$ Note $c_1 = \frac{z_1}{180} \cdot \operatorname{arc} \cos \frac{(z_2 - z_1) \cdot t}{2 \cdot \pi \cdot e}$
Operational factor	C ₂		Table 2
Acceleration factor	C3		Table 3

Formulae

5. Quantities of Motion

Symbol	Designation	Unit	Calculation/Remarks
Speed (RPM)	n	min ⁻¹	$n = \frac{v \cdot 19, 1 \cdot 10^3}{d} [min^{-1}]$
Belt speed	v	m/s	$v = \frac{d_0 \cdot n}{19.1 \cdot 10^3} = \sqrt{\frac{2 \cdot s_a \cdot a}{1000}} [m/s]$
Acceleration	а	m/s ²	
Acceleration due to gravity	g	m/s ²	g = 9.81 [m/s ²]
Travel total	S _V	mm	$sv = s_a + s'_a + s_c [mm]$
Accelerating (braking) distance	s _a (s' _a)	mm	$s_a(s_a') = \frac{a \cdot t_a^2 \cdot 10^3}{2} = \frac{v^2 \cdot 10^3}{2 \cdot a}$ [mm]
Travel where v = constant	Sc	mm	$s_c = v \cdot t_c \cdot 10^3 \text{ [mm]}$
Accelerating (braking) time	t _a (t' _a)	s	$t_{a}(t_{a}') = \frac{v}{a} = \sqrt{\frac{2 \cdot s_{a}}{a \cdot 1000}} [s]$
Travel time where v = constant	t _c	S	$t_{c} = \frac{s_{c}}{v + 10^{3}} [s]$
Travel time total	t _v	s	$t_v = t_a + t_a' + t_c [s]$
Gear ratio	i		

6. Other Values/Abbreviations

Symbol	Designation	Unit	Calculation/Remarks
Angle of incline	α	0	for inclined conveying
Specific spring rate	C _{spec}	Ν	Table value from calculation sheet
Spring rate of a belt Spring rate of a linear drive	с	N/mm	generally: $c = \frac{C_{spec}}{I} [N/mm]$ $c = \frac{I}{I_1 \cdot I_2} \cdot c_{spec} [N/mm]$
Determine from extreme positions of linear drive	c _{min} /c _{max}	N/mm	$I = I_1 + I_2 [mm]$
c_{min} for $I_1 = I_2$			$c_{min} = \frac{4 \cdot c_{spec}}{I}$ [N/mm]
Natural frequency	f _e	s ⁻¹	$f_{e} = \frac{1}{2\pi} \cdot \left[\frac{c \cdot 1000}{m_{L}} \right] [s^{-1}]$
Exciter frequency	f ₀	s ⁻¹	$f_0 = \frac{n}{60} [s^{-1}]$
Tooth base service factor	S _{tooth}		$S_{tooth} = F'_U/F'_{U req}$
Tension member service factor	S _{tm}		$S_{tm} = F_{per}/F_B$
Number of teeth	Z		where i = 1
Number of teeth on small pulley	z ₁		where i ≠ 1
Number of teeth on large pulley	Z2		where i ≠ 1
Minimum number of teeth	Z _{min}		Table value from calculation sheet
Minimum take-up pulley diameter	d _{s min}	mm	Table value from calculation sheet
Power to be transmitted	Р	kW	$P = \frac{F_{U} \cdot \mathbf{n} \cdot d_{0}}{19.1 \cdot 10^6} = \frac{F_{U} \cdot \mathbf{v}}{10^3} \ [kW]$
Torque to be transmitted	т	Nm	$T = \frac{F_U \cdot d_0}{2 \cdot 10^3} $ [Nm]
Timing belt open	AdV07		
Timing belt welded endless	AdV09		

Calculation method for B 92 timing belts

$F_{U} = \frac{2 \cdot 10^{3} \cdot T}{d_{0}} = \frac{19.1 \cdot 10^{6} \cdot P}{n \cdot d_{0}} = \frac{10^{3} \cdot P}{v} [N]$	Effective pull F _U [N] to be transmitted	1
and $v = \frac{d_0 \cdot n}{19.1 \cdot 10^3}$ [m/s] with $d_0 = \frac{z \cdot t}{\pi}$ [mm]		
or: Sum of all forces $F_U = F_R + F_H + F_A \dots [N]$ in which: $F_R = m \cdot \mu \cdot g$ [N] frictional force $F_H = m \cdot g$ or $m \cdot g \cdot sin \alpha$ [N] lifting power $F_A = m \cdot a$ [N] accelerating force		
		2
Operational and acceleration factor c_2 and c_3 take from tables 2 and 3	Maximum effective pull F _{U max} [N]	2
$F_{U \max} = F_U \cdot (c_2 + c_3) $ [N]		
$c_1 = z/2$ for $i = 1$	Teeth in mesh factor c1 for the driving (smaller) pulley	3
$c_1 = \frac{z_1}{180} \cdot \arccos \frac{(z_2 - z_1) \cdot t}{2 \cdot \pi \cdot e} \qquad \text{for } i \neq 1$		
Always round down calculated values for c ₁ to the smaller round figure. Note maximum values in table 1! Estimate number of teeth if not given and determine n.		
	Constitue of the stress well	
$F'_{U req} = \frac{F_{U max}}{c_1} [N]$	required F ^{'U req} [N]	4
point of intersection with the speed in question. All belt pitches which lie above this point can be used in principle.	Belt selection from graphs	
Select belt type and find point of intersection on the calculation sheet for that par- ticular type. The curve above the point of intersection gives the belt width b_0 [mm].	$F^{\prime}{}_{U}\left[N\right]$ of selected belt type	
The point where speed and width curve intersect gives the transmittable effective pull F'_{U} [N].		
$I = 2 \cdot e + z \cdot t = 2 \cdot e + \pi \cdot d_0 \text{ [mm]}$ for $i = 1$	Belt length l [mm]	5
$I = \frac{t \cdot (z_2 - z_1)}{2} + 2e + \frac{1}{4e} \left[\frac{t \cdot (z_2 - z_1)}{\pi} \right]^2 [mm] \qquad \text{ for } i \neq 1$		
I must always be an integral multiple of the belt pitch t in mm. Equations		
are valid for rotating 2-pulley drives. Calculate other designs according to	Belt mass m _R [kg]	
$m_{\rm e} = m_{\rm e}^2 \cdot 1/1000$ [kg]; $m_{\rm e}$ from calculation sheet	Reduced mass of timing holt	-
For calculation see formulae.	pulley and take-up pulleys	
Timing belt pulley measurements from catalogue.	m _{Z red} , m _{S red} [kg].	

Calculation method for B 92 timing belts

Calculation example 1

Linear drive for moving assembly carriers

Travel	$S_V = 2500 \text{ mm}$	D)i
Speed	v = 3 m/s = const.; i = 1		
Acceleration	a = 15 m/s ²		5
Mass of slide	$m_L = 25 \text{ kg}$		
	incl. assembly carrier + goods being carried		
Frictional force of guide rails	$F_R = 80 N$		
Slide length	$I_{L} = 400 \text{ mm}$		
do	approx. 100 mm		

Required: Belt type and width b_0 , RPM, timing belt pulley data, pretensioning force and take-up range, effective pull, positioning accuracy

$F_{\rm H} = F_{\rm A} + F_{\rm B} [N]$	Effective pull F _U [N]	1
$F_{A} = 25 \text{ kg} \cdot 15 \text{ m/s}^{2} = 375 \text{ N}$ $F_{U} = 375 \text{ N} + 80 \text{ N} = 455 \text{ N}$ Mass of timing belt pulley and belt neglected.	Effective pull F _U [N] to be transmitted – approximate.	
	Operational and acceleration c_2 and c_3	2
$c_2 = 1.4$ because of high acceleration $c_3 = 0$ as $i = 1$ $455 \text{ N} \cdot 1.4 = F_{U \text{ max}} = 637 \text{ N}$	F _{U max} – approximate.	
		2
Selected: $c_1 = 12$ for open material Where $d_0 \approx 100$ mm and $c_1 = 12$ $Z_{min} = 24$; i.e. 14 und 20 mm pitches ruled out due to d_0 !	Teeth in mesh factor c ₁	3
		1 -
$F'_{U req} = \frac{F_{U max}}{c_1} = 53.08 \text{ N}$	F' _{U req}	4
$n = \frac{v \cdot 19.1 \cdot 10^3}{d_0} = 573 \text{ min}^{-1}$	n from given values d_0 and v	

Linear drive for moving assembly carriers

$F_A = (25 \text{ kg} + 1 \text{ kg} + 2 \cdot 0.34 \text{ kg}) \cdot a$ $F_A = 400.2 \text{ N}$	F _{U max} exact including m _R and m _{Z red}	6
$F_{U} = 400.2 + 80 = 480 \text{ N}$ $F_{U \text{ max}} = 480 \cdot 1.4 = 675 \text{ N}$ $F'_{U \text{ req}} = 56.02 \text{ N}$		
$S_{tooth} = \frac{F'_U}{F'_{Ureq}} = \frac{140}{56.02} = 2.5 > 1$ Demand fulfilled	Tooth base service factor S _{tooth}	7
$F_V \ge F_{U max}$ for linear drives! F_V selected = 1.5 $F_{U max}$ = 1000 N	Force determining belt selection ${\rm F}_{\rm B}$	8
$F_B = F_V + F_{U max} = 1675 N$	Pretensioning force F _V	
$S_{tm} = \frac{F_{per}}{F_{r}} = \frac{3750}{1675} = 2.24 > 1$ Demand fulfilled	Tension member service factor S_{tm}	
IB 10/2	F _{per} from calculation sheet for AT 10	
$\Delta e = \frac{F_V \cdot I}{2 P_V P_V} = \frac{1000 \text{ N} \cdot 6290 \text{ mm}}{2 P_V P_V P_V} = 3.14 \text{ mm}$	Take-up range Δe [mm] c_{spec} from calculation sheet for AT 10	9
Z·C _{spec} Z·10°N		
$c_{min} = \frac{I}{I_1 \cdot I_2} \cdot c_{spec} = \frac{6290 - 2 \cdot 80}{2684 \cdot 3446} \cdot c_{spec} = 662.77 \text{ N/mm}$	Spring rate of system c _{min} ; c _{max}	10
$c_{max} = \frac{I}{I_1 \cdot I_2} \cdot c_{spec} = \frac{6290 - 2 \cdot 80}{184 \cdot 5946} \cdot c_{spec} = 5602.96 \text{ N/mm}$	I_1 and I_2 from diagram!	
External force here: $F_R = 80 \text{ N}$	Positioning accuracy due to external force	11
$\Delta s_{max} = \frac{F_R}{c_{min}} = 0.122 \text{ mm}$		
$f_e = \frac{1}{2\pi} \cdot \sqrt{\frac{c_{min} \cdot 1000}{m_L}} = 25.7 \text{ s}^{-1}$	Natural frequency of system	12
$f_0 = \frac{n}{60} = \frac{562}{60} = 9.4 \text{ s}^{-1}$ i.e. no danger of resonance	Exciter frequency	
Timing helt 25 AT 10, 6290 mm long	Decult	
Timing belt pulley with $Z = 32$ für 25 mm belt	Result	
Take-up range to generate $F_V \Delta e = 3.14 \text{ mm}$ n = 562 min ⁻¹	If Asmon has to be smaller	
$\Delta s_{max} = 0.122 \text{ mm}$	$b_0 = 32 \text{ mm would be selected.}$	
	sanger of resonance.	

Drag band conveyor for workpiece tray

Diagram $d_0 \le 80 \text{ mm}$ $d_0 \le 80 \text{ mm}$	Speed Mass of tray incl. load Maximum loading Belt support tight side Belt support slack side Centre distance Start Operation Pulley diameter Required: Belt type, length, take-up ra	v = 0.5 m/s m = 1.8 kg 20 trays Plastic rails Rollers e = 20000 mm Without load continuous operation, purely conveying $d_0 \le 80 mm$ ange, timing belt pulley data
Effective pull F _U [N]	F_U here = F_R , as acceleration negligible	2.
Effective pull F _U [N] to be transmitted without belt mass.	$F_U = F_R = m \cdot \mu \cdot g$ μ selected approx. 0.25 from table 4 $m = 20 \cdot 1.8 \text{ kg} = 36 \text{ kg}$ $F_U = F_R = 36 \cdot 9.81 \cdot 0.25 = 88.3 \text{ N}$	
2 Operational and acceleration factor	$c_3 = 0, \text{ as } i = 1$ $c_2 = 1.2 \text{ selected } (20\% \text{ reserve})$ $F_{U \max} = 1.2 \cdot 8.3 \text{ N} = 106 \text{ N for } 2 \text{ belts}$ $F_{U \max} = 53 \text{ N per belt}$	
3 Teeth in mesh factor	c_1 selected = $c_{1 max} = 6$ for AdV 09 Belt rotates and has been welded end	less.
4. Specific effective pull required F' _{U req}	$F'_{U req} = \frac{F_{U max}}{c_1} = 8.8 \text{ N}$	
Speed	where d ₀ = 75 mm n = $\frac{v \cdot 19.1 \cdot 10^3}{75}$ = 127 min ⁻¹	
	The perrowect helt	
Belt selection	is already sufficient.	
	16 mm width to provide greater support for tray.	
$F^{\prime}{}_{U}\left[N\right]$ of selected belt type	F' _U = 34 N	
	F' F'Ure	U 34 N → 2 → 4 → 4 → 4 → 4 → 4 → 4 → 4 → 4 → 4
		127 T 5 graph

$\frac{d_0 \cdot \pi}{t} = Z = 47.1$ teeth	Selecting timing belt pulley	5
Selected: Z = 48 teeth; standard pulley		
$I = Z \cdot t + 2 \cdot e = 40240 \text{ mm}$	Belt length	
$m_R = 1 \cdot m'_R = 0.038 \text{ kg/m} \cdot 40.24 \text{ m} = 1.53 \text{ kg}$	Belt mass	
$\begin{split} F_{U \max} &= F_R \cdot 1.2 \\ F_R &= (20 \cdot 1.8 \text{ kg} + 2 \cdot 1.53 \text{ kg}) \cdot 9.81 \cdot 0.25 = 95.8 \text{ N} \\ F_{U \max} &= 115 \text{ N} = 57.5 \text{ N/belt} \\ \text{If increase is negligible, further calculation unnecessary} \end{split}$	F _{U max} including m _R of tight side	6
$S_{tooth} = \frac{F'_U \cdot c_1}{F'_U \max} = \frac{34 \cdot 6}{57.5} = 3.69 > 1$ Demand fulfilled	Tooth base service factor	7
$F_V \ge 0.5 \cdot F_{U \text{ max}}$ Selected: $F_V = 40 \text{ N}$	Pretensioning force F _V	8
$F_B = F_V + F_{U max} = 40 + 57.5 = 97.5 N$	Force determining belt selection ${\rm F}_{\rm B}$	
$S_{tm} = \frac{F_{per}}{F_B} = \frac{270 \text{ N}}{97.5 \text{ N}} = 2.8 > 1 \qquad \text{Demand fulfilled}$		
T _{per} from calculation sheet for to 15 Adv 09	Tension member service factor \mathbf{S}_{tm}	
$\Delta e = \frac{F_V \cdot I}{2 \cdot c_{spec}} \qquad \text{with } c_{spec} = 0.12 \cdot 10^6 \text{ from calculation sheet}$	Take-up range ∆e	9
$\Delta e = \frac{40 \cdot 40240}{2 \cdot 0.12 \cdot 10^6} = 6.7 \text{ mm}$		
2 pieces timing belt type 16 T 5, 40240 mm long, AdV 09 Timing belt pulley with Z = 48 teeth for 16 mm belt Take-up range to generate $F_V \Delta e = 6.7$ mm	Result	

Lifting device

Diagram		Travel Speed Medium acceleration/deceleration Max. deceleration (emergency shutdown) Slide mass with load No. of belts Frictional force of guide rails d ₀	2500 mm 2 m/s 4 m/s ² 10 m/s ² 75 kg 2 pieces $F_R = 120 N$ maximum 150 mm
¥	(+)	Required: Belt type and length, pretensionir Rough operating conditions!	ng force, take-up range, speed.
1 Effective pu Effective p to be trans	ull F _U [N] pull F _U [N] smitted.	$\begin{split} F_U &= F_A + F_H + F_R + \dots \\ F_R &= 120 \text{ N} \\ F_A &= 75 \text{ kg} \cdot 4 \text{ m/s}^2 = 300 \text{ N} \\ F_A &\max &= 75 \text{ kg} \cdot 10 \text{ m/s}^2 = 750 \text{ N} \text{ (emergency)} \\ F_H &= 75 \text{ kg} \cdot 9.81 \text{ m/s}^2 = 736 \text{ N} \\ F_U &= 120 \text{ N} + 736 \text{ N} + 750 \text{ N} \text{ (emergency)} \text{ brack} \\ F_U &= 1606 \text{ N} \end{split}$	shutdown) king during descent)
2 Operationa Acceleratio	l factor c ₂ n factor c ₃	$c_3 = 0$ as $i = 1$ $c_2 = 2.0$ because of rough operating condit $F_{U max} = 1606 \cdot 2 = 3212$ N distributed between $F_{U max} = 1606$ N pro belt	ions en 2 belts
3 Teeth in me	esh factor c1	Open material: $c_1 = 12 = c_{1 max}$ for AdV 07 sel => $Z_{min} = 24$; t = 20 ruled out because of $d_{0 max}$	lected
4 Specific effe pull require	ective d F'ureq	$F'_{U req} = \frac{F_{U max}}{12} = 133 \text{ N} \text{ per belt!}$	
Speed		Where $d_0 = 140 \text{ mm}$ $n = \frac{v \cdot 19.1 \cdot 10^3}{d_0} = 273 \text{ min}^{-1}$	
Belt select	ion	All types between L and HTD 14M are possible. Selected: HTD 14M because of large reserves. Designation: 40 HTD 14M	Dverview graph
F' _U [N] of se	elected belt type	F' _U = 306 N F' _U 306 N F' _{U req} 133 N	

HTD 14M graph

$$Z = \frac{d_0 \cdot \pi}{t} = \frac{140 \cdot \pi}{14} = 31.4$$
Selected: Z = 32; standard pulley $\Rightarrow n = 268 \text{ min}^{-1}$
I = 3500 - 27.2 t - 500 + 27.114
I = 7176 mm \Rightarrow 512.6 teeth
I selected: 512 teeth \Rightarrow 7168 mm
m_R - I = 0.44 kg/m - 7.168 m = 3.155 kg/belt
Belt length
Reduced mass of timing belt pulley data
$$m_Z = 6.17 \text{ kg} \quad (catalogue values)$$

$$d_z = 1390 \text{ mm} \quad (catalogue values)$$

$$m_Z \text{ red} = \frac{m_Z}{2} \cdot \left[1 + \frac{d^2}{d\chi^2}\right] = 3.18 \text{ kg}$$
Reduced mass of timing belt pulley
gives in total: 4 - 3.18 = 12.7 kg
Fu = F_A + F_H + F_R
F_R = 736 N
F_R = 726 N
F_R = 726 N
F_R = 120 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 120 + 736 = 1800 N
F_U = 940 + 7

Lifting device

8	Selecting pretensioning force Force determining belt selection F _B	$F_V \ge F_{U \max} = 1800$ Selected: 2000 N = F _V $F_B = F_{U \max} + F_V = 3800 \text{ N}$
	Permissible force on each strand	F _{per} = 8500 N
	Tension member service factor $S_{tm}^{}$	$S_{tm} = \frac{F_{per}}{F_B} = \frac{8500}{3800} = 2.24 > 1$ Demand fulfilled
9	Take-up range ∆e	$c_{spec} = 2.12 \cdot 10^{6} \text{ N}$ $\Delta e = \frac{F_{V} \cdot I}{2 \cdot c_{spec}} = \frac{7168 \cdot 2000}{2 \cdot 2.12 \cdot 10^{6}} = 3.38 \text{ mm}$
Result		Timing belt type 40 HTD 14M 7168 mm long = 512 teeth Timing belt pulleys à 32 teeth for 40 mm wide belt Take-up range to generate force F_V $\Delta e = 3.38$ mm
Safety	note	In the case of lifting devices the regulations of professional/trade associations should be observed. If necessary, safety from breakage must be proven from the breaking load of the belt. With open material AdV 07 this is approximately 4 times the permissible force on each strand F _{per} . Exact values on request.

Overview graph

Timing belt type T 5

b ₀ [mm]	10	16	25	32	50
	190	270	450	550	840
	390	550	910	1100	1690
	0.08	0.12	0,19	0.24	0.38
	0.024	0.038	0.060	0.077	0.12
	b ₀ [mm]	b ₀ [mm] 10 190 390 0.08 0.024	b ₀ [mm] 10 16 190 270 390 550 0.08 0.12 0.024 0.038	b ₀ [mm] 10 16 25 190 270 450 390 550 910 0.08 0.12 0,19 0.024 0.038 0.060	b ₀ [mm] 10 16 25 32 190 270 450 550 390 550 910 1100 0.08 0.12 0,19 0.24 0.024 0.038 0.060 0.077

Timing belt type AT 5

b ₀ [mm]	10	16	25	32	50
	280	630	840	1100	1750
	560	1260	1680	2240	3500
	0.17	0.27	0.42	0.54	0.84
	0.030	0.048	0.075	0.096	0.150
	b ₀ [mm]	b ₀ [mm] 10 280 560 0.17 0.030	b ₀ [mm] 10 16 280 630 560 1260 0.17 0.27 0.030 0.048	b ₀ [mm] 10 16 25 280 630 840 560 1260 1680 0.17 0.27 0.42 0.030 0.048 0.075	b ₀ [mm] 10 16 25 32 280 630 840 1100 560 1260 1680 2240 0.17 0.27 0.42 0.54 0.030 0.048 0.075 0.096

Timing belt type T 10

b ₀ [mm]	16	25	32	50	75	100
	650	1100	1300	2100	2550	3550
	1310	2200	2620	4200	5100	7100
	0.32	0.50	0.64	1.00	1.50	2.00
	0.077	0.120	0.154	0.240	0.360	0.480
	b ₀ [mm]	b ₀ [mm] 16 650 1310 0.32 0.077	b ₀ [mm] 16 25 650 1100 1310 2200 0.32 0.50 0.077 0.120	b ₀ [mm] 16 25 32 650 1100 1300 1310 2200 2620 0.32 0.50 0.64 0.077 0.120 0.154	b ₀ [mm] 16 25 32 50 650 1100 1300 2100 1310 2200 2620 4200 0.32 0.50 0.64 1.00 0.077 0.120 0.154 0.240	b ₀ [mm] 16 25 32 50 75 650 1100 1300 2100 2550 1310 2200 2620 4200 5100 0.32 0.50 0.64 1.00 1.50 0.077 0.120 0.154 0.240 0.360

Timing belt type AT 10

Characteristic values: Type AT 10

Value	b ₀ [mm]	25	32	50	75	100
F _{per} [N] AdV	09	1850	2500	3700	6000	8000
F _{per} [N] AdV	07	3750	5000	7500	12000	16000
C _{spec} [N] · 10	6	1.00	1.28	2.00	3.00	4.00
m' _R [kg/m]		0.160	0.205	0.320	0.480	0.640

Timing belt type T 20

Characteristic values: Type T 20

b ₀ [mm]	25	32	50	75	100
	1600	2050	3250	4900	6700
	3200	4100	6500	9800	13500
	0.88	1.32	1.75	2.63	3.50
	0.193	0.246	0.385	0.577	0.770
	b ₀ [mm]	b ₀ [mm] 25 1600 3200 0.88 0.193	b ₀ [mm] 25 32 1600 2050 3200 4100 0.88 1.32 0.193 0.246	b ₀ [mm] 25 32 50 1600 2050 3250 3200 4100 6500 0.88 1.32 1.75 0.193 0.246 0.385	b0 [mm] 25 32 50 75 1600 2050 3250 4900 3200 4100 6500 9800 0.88 1.32 1.75 2.63 0.193 0.246 0.385 0.577

Timing belt type AT 20

Characteristic values: Type AT 20

Value	b ₀ [mm]	25	32	50	75	100
F _{per} [N] AdV 09		2900	3600	5800	9000	12000
F _{per} [N] AdV 07		5800	7200	11700	18000	25200
C _{spec} [N] · 10 ⁶		1.56	2.00	3.13	4.69	6.25
m ['] _R [kg/m]		0.250	0.320	0.500	0.750	1.000

Timing belt type L = 3/8" \cong t = 9.525 mm

Characteristic values: Type L = 3/8"

Value	b ₀ [mm]	12.7	19.1	25.4	38.1	50.8	76.2	101.6
F _{per} [N] AdV 09		440	650	870	1310	1760	2550	3300
Fper [N] AdV 07		890	1340	1780	2670	3560	5100	6600
C _{spec} [N] · 10 ⁶		0.25	0.38	0.50	0.75	1.00	1.50	2.00
m' _R [kg/m]		0.050	0.074	0.099	0.149	0.198	0.297	0.396

Timing belt type $H = 1/2'' \cong t = 12.7 \text{ mm}$

Value	b ₀ [mm]	12.7	19.1	25.4	38.1	50.8	76.2	101.6
F _{per} [N] AdV 09		440	650	870	1310	1760	2550	3300
F _{per} [N] AdV 07		890	1340	1780	2670	3560	5100	6600
C _{spec} [N] · 10 ⁶		0.25	0.38	0.50	0.75	1.00	1.50	2.00
m' _R [kg/m]		0.057	0.086	0.114	0.171	0.229	0.343	0.457

Timing belt type HTD 8M

Characteristic values: Type HTD 8M

Value	b ₀ [mm]	20	30	50	85
F _{per} [N] AdV 0	9	1400	2100	3500	5700
F _{per} [N] AdV 0	7	2800	4200	7000	11500
C _{spec} [N] · 10 ⁶		0.70	1.05	1.75	2.98
m' _R [kg/m]		0.132	0.198	0.330	0.561

Timing belt type HTD 14M

Value	b ₀ [mm]	40	55	85	115
Fper [N] AdV 09		4200	5800	9600	11600
Fper [N] AdV 07		8500	11800	19500	23600
C _{spec} [N] · 10 ⁶		2.12	2.92	4.51	5.83
m' _R [kg/m]		0.440	0.605	0.935	1.265

Tables

Table 1 Teeth in mesh factor c₁

Application	c ₁ max	
Welded belts AdV 09	6	
Open belts AdV 07	12	
Linear drives with higher		
positioning accuracy	4	
[•	

 $c_1 =$ Number of teeth involved in power flux

Table 2	Smooth operating conditions	c ₂ = 1.0
Operational factor c ₂		
1 2	Short-term overload < 35%	$c_2 = 1.10 - 1.35$
	Short-term overload < 70%	$c_2 = 1.40 - 1.70$
	Short-term overload < 100%	$c_2 = 1.75 - 2.00$

Table 3	Transmission ratio i	c ₃
Acceleration factor c ₃		
•	i > 1 to 1.5	0.1
	i > 1.5 to 2.5	0.2
	i > 2.5 to 3.5	0.3
	i > 3.5	0.4

Table 4	
Friction coefficients of timing belts	

μ	PU	PAZ	PAR
Bed/rail	0.5	0.2 – 0.3	0.2 – 0.3
Plastic support rail	0.2 – 0.3	0.2 – 0.25	0.2 – 0.25
Accumulation	0.5	0.2 – 0.3	0.2 – 0.3

All values are guidelines PU = polyurethane PAZ = polyamide fabric on toothed side PAR = polyamide fabric on back of belt

Resistances

Chemical	Resistance
Acetic acid 20%	О
Acetone	О
Aluminium chloride, aqueous 5%	ó •
Ammonia 10%	•
Aniline	-
ASTM oil 1	•
ASTM oil 2	•
ASTM oil 3	О
Benzol	О
Butyl acetate	-
Butyl alcohol	О
Carbon tetrachloride	-
Common salt solution, conc.	•
Cyclohexanol	О
Diesel oil	•
Dimethyl formamide	-
Ethyl acetate	-
Ethyl alcohol	О
Ethyl ether	•
Hydrochloric acid 20%	О
Iron chloride, aqueous 5%	О
Isopropyl alcohol	О
Kerosine	•

Chemical	Resistance
Lubricating grease (sodium soap fat)	•
Methyl alcohol	О
Methyl alcohol/Benzine 15-85	•
Methyl ethyl ketone	О
Methylene chloride	-
Mineral oil	•
n-Heptane	•
n-Methyl-2-pyrrolidone	-
Nitric acid 20%	-
Petrol, regular	•
Petrol, super	•
Potash lye 1 N	О
Sea water	•
Soda lye 1 N	О
Sodium chloride solution, conc.	•
Sodium soap fat	•
Sodium soap fat + 20 % water	О
Sulphuric acid 20%	О
Tetrahydrofurane	-
Toluene	-
Trichloroethylene	-
Water	٠

Table 5 Chemical resistance at room temperature

Symbols

0

_

- = good resistance
- limited resistance;
 slight weight and
 dimensional changes
 after a certain period
 of time
- = no resistance

Because our products are used in so many applications and because of the individual factors involved, our operating instructions, details and information on the suitability and use of the products are only general guidelines and do not absolve the ordering party from carrying out checks and tests themselves. When we provide technical support on the application, the ordering party bears the risk of the machinery functioning properly.

Forbo Siegling Service – anytime, anywhere

In the company group, Forbo Siegling employs more than 2000 people worldwide.

Our production facilities are located in eight countries; you can find companies and agencies with stock and workshops in more than 50 countries. Forbo Siegling service centres provide qualified assistance at more than 300 locations throughout the world.

Forbo Siegling GmbH Lilienthalstraße 6/8, D-30179 Hannover Telefon +49 511 6704 0, Fax +49 511 6704 305 www.forbo-siegling.com, siegling@forbo.com

Forbo Movement Systems is part of the Forbo Group, a global leader in flooring, bonding and movement systems.